

Van CO₂, water en electriciteit naar ethyleen

Bernard Dam, Chemical Engineering, TU Delft

REDUCTION OF WORLD CO₂-EMISSIONS NEEDS TO START SOON

ŤUDelft

Science (2013) vol339

A sustainable energy system

ŤUDelft

Chemical industry cannot rely only on recycling and biobased feedstock

MILIEU EN KLIMAAT De Botlek moet om, en zo snel mogelijk

De verduurzaming van de chemie en de energiesector schiet tekort. Vier Delftse wetenschappers buigen zich over de manier waarop de (petro)chemie moet vergroenen. Volgens de een is het vijf voor twaalf, volgens de ander is het al te laat. Voor de raffinaderijen in de Botlek is het erop of eronder. Het advies: hou verschillende potjes op het vuur, want voor één aanpak kiezen is gevaarlijk. 'We moeten als een gek fundamenteel onderzoek gaan doen.'

Wim Haije Onderzoeker aan de faculteit werktuigbouwkunde, TU Delft

Paulien Herder Hoogleraar energiesystemen, TU Delft

Ruud van Ommen Hoogleraar producten processengineering, TU Delft

Bernard Dam Hoogleraar fundamenteel onderzoek elektrochemie, TU Delft

ŤUDelft

Industrial energy consumption NL: 1075 PJ/year of which ~50% non-energetic

16-11-2018 © Het Financieele Dagblad

To accelerate the transition towards sustainable production of chemicals and fuels.

Scales

Disciplines

Research lines

Indirect route

Micro Electroconversion research

Meso Reactor, process and system engineering

Macro Life cycle analysis + societal embedding

Power Engineering
Catalysis
Electrochemistry
Materials science
Transport Phenomena
Reactor Engineering Process Intensification
Process & Control
Separation Technology
Energy Technology & System Engineering
System Integration & Societal Embedding

Direct route

Base chemicals and fuels, such as CO, CH_4 , C_2H_4 , NH_3 , etc.

The direct route

Energy content per electron used (to make fuels)

Note: the kinetics slows down with the number of electrons

Joule 2, 825-832

Some feasible CO₂ reduction reactions

reaction	п	E°/V^{a}
$CO_2 \rightleftharpoons CO + 0.5O_2$	2	-1.33
$CO_2 + H_2O \rightleftharpoons HCOOH + 0.5O_2$	2	-1.43
$CO_2 + 2H_2O \rightleftharpoons CH_3OH + 1.5O_2$	6	-1.21
$CO_2 + 2H_2O \rightleftharpoons CH_4 + 2O_2$	8	-1.06
$2CO_2 + 3H_2O \rightleftharpoons C_2H_5OH + 3O_2$	12	-1.14
$2CO_2 + 2H_2O \rightleftharpoons C_2H_4 + 3O_2$	12	-1.15
$3CO_2 + 4H_2O \rightleftharpoons C_3H_7OH + 4.5O_2$	18	-1.13

ŤUDelft

When is the electrochemical production profitable

• DAC of CO₂ cost = \$30/tonne

• Faradaic efficiency 90%

Current density 500 mA/cm²

Electrolyser \$300/kW

De Luna et al., Science 364, eaav3506 (2019) 26 April 2019

Water electrolysis: the medium equals the feed

ŤUDelft

Electrolysis: the medium does not equal the feed

TUDelft

The nature of the feeds and products determines the reactor design

Typical losses water electrolysis

Typical losses water electrolysis

At high current density the efficiency of CO₂ conversion rapidly drops

Large scale implies: high current density + abundant materials

Energy Environ. Sci., 2013, 6, 3112–3135 | 3121

Some electrochemical reactions

Half-reactions:

 $120H^{-} \rightarrow 3O_{2} + 6H_{2}O + 12e^{-}$

 $12e^{-} + 2CO_2 + 8H_2O \rightarrow C_2H_4 + 12OH^{-}$

-0.08 V

-1.23 V

Sum reaction:

 $2CO_2 + 2H_2O \rightarrow C_2H_4 + 3O_2$ with $\Delta G = 1331$ kJ/mol

Potential:

E =- ∆G/nF = 1331kJ/ (12*96485)= -1.15 V

(Thermal neutral potential: $E = -\Delta H/nF = 1309kJ/(12*96485) - 1.13 V$)

ŤUDelft

Tom Burdyny

Science 360, 2018

Limited CO₂ solubility
in water
High OH⁻ concentration

favours diffusion

Formation of Carbonates at high pH:

 $CO_2 + OH^- \rightarrow HCO_3^-$

High current densities, catalysis is not the problem

Tom Burdyny

Science 360, 2018

UDelft

Faradaic efficiency 70%, Potential 3V, hence total energy efficiency 27%

When is the electrochemical production profitable

• DAC of CO₂ cost = \$30/tonne

• Faradaic efficiency 90%

Current density 500 mA/cm²

Electrolyser \$300/kW

De Luna et al., Science 364, eaav3506 (2019) 26 April 2019

Electro-conversion: from atoms to factories

Large scale means: high current density + abundant materials

ŤUDelft

Tom Burdyny

10-400 cm² Area

Management of internal gradients

How to maintain uniform potential and pressure, to ensure that the same conversion takes place everywhere

P_{liquid}

gas

Design of Stack: Management of electrical potential and overall heat and mass balance

Tom Burdyny

System configuration

We need low temperature separation procedures!!

What does it take to make C₂H₄ from CO₂ and H₂O

System design		for the second s
Total amperage:	~31 kA	
Assumed potential	~3 V	
C ₂ H ₄ Produced:	~38 kg C ₂ H ₄ /day	
Energy per tonne:	~210 GJ/tonne	

JDelft

DOW Chemical plant in Terneuzen: C_2H_4 from Naphta:1.5 Mton/yearEnergy cost:35,5+20 = 55 GJ/ton*equivalent to 2.5 GW_eThis implies 10 GW_e electrochemically

*Energy 32 (2007) 1104–1123

The scale of a 3.5 Mtonne/yr 'air to barrel' MeOH plant

Delft

System integration: a useful product at the anode?!

ŤUDelft

Weber ACS Catal. 2019, 9, 946–950

Conclusion

- CO₂ conversion to hydrocarbons is certainly possible
- Catalysis is not the only problem
- Many scientific and engineering challenges to be solved
- The scale of the technology needed for the energy transition is mind boggling
- The use of cheap and abundant materials is essential

Acknowledgements

Dr T Burdyny

Ir. John Nijenhuis

Holland High Tech Global Challenges, Smart Solution

Dr. Wim Haije

Dr. Wilson Smith

Geerlings

NWO

Applied and Engineering Sciences

Netherlands Organisation for Scientific Research

+ the whole e-Refinery community