

Some remarks on Climate Change and our Future Energy System

Wim Turkenburg

w.c.turkenburg@uu.nl

Copernicus Institute, Utrecht University & Wim Turkenburg Energy and Environmental Consultancy, Amsterdam

> NNV De Bilt, 29 October 2015

Source drawing: NRC-HB, 19 August 2013

Climate Change & Stranded assets Carbon budget & CCS

Austria's Pasterze Glacier has retreated hundreds of meters since nations began debating limiting warming to +2°C

June 2015: "All countries should (be enabled to) follow a lowcarbon and resilient development pathway in line with the global goal to hold the increase in global average temperature below 2°C".

Source: J. Tollefson, 'Global-warming limit of 2°C hangs in the balance', Nature, 2 April 2015

Monthly average CO₂ concentration in the atmosphere at Mauna Loa Observatory (1958 – September 2015)

Source curve: http://www.esrl.noaa.gov/gmd/webdata/ccgg/trends/co2_data_mlo.pdf (visited: 28 Oct. 2015)

IEA (October 2015) Impact pledges (INDCs) on global emissions of CO₂

Table 1 >Global energy- and process-related greenhouse-gas emissionsin the INDC Scenario (Gt CO2-eq)

9 37.5	38.4
2 3.4	3.5
1 40.9	41.9
	2 5.4 1 40.9

Source: IEA, 'Energy and Climate Change – WEO Special Briefing for COP21', 21 October 2015

Development of global CO₂ emissions from energy and industrial sources to limit temp. change to below 2°C (prob. > 50%)

- GEA energy pathways toward a sustainable future -

EU greenhouse gas emission: trends, projections and reduction targets

Source: EEA, October 2015

Global Carbon budget compatible with limiting global warming to +2°C versus fossil fuel reserves

Unburnable Carbon and Stranded Assets

- Not the use of fossil fuels but the emission of CO₂ (at present ~37 Gton/yr globally) is the problem!
- Carbon Tracker and groups like Urgenda in NL don't give enough attention to **the potential of CCS**.
- CCS can have a large impact (~2,000 GtCO2 till 2100) on 'unburnable carbon'.
- But: within about 20 years we can't allow any new investments in unabated use of any fossil fuel (given 'max +2°C), having huge consequences for Shell, Exxon, BP, Gasunie, Gasterra, EBN, RWE, E.ON, Vattenfall, ENECO, KVGN, etc. Therefore a Roadmap CCS for the Netherlands is urgently needed!
- Note also the statement of the EC (Dec. 2011): "No new investments in fossil fuel power plants after 2030 without CCS".

Emissions of CO₂, the most important long-lived anthropogenic greenhouse gas, can be reduced by CCS

Removal of CO₂ from power plants

- CCS: a proven technology that today securely stores 25 Mt CO₂ per year.
- There are 21 large-scale projects in operation or construction, all expected to be online by 2016. These will have the capacity to capture up to 40 Mt CO₂ per annum.
- In Saskatchewan (Canada) the first commercial scale operation of CCS at a power plant started October 2014: the *Boundary Dam project* (Shell involved).
- It's a coal-burning plant that generates 110 MW and would emit more than 1 Mt of CO₂ per year. Its operators say, the project is "exceeding expectations."

Aerial Photo of SaskPower's Boundary Dam Project near Estevan, Saskatchewan

 Shell/Cansolv and SSE are looking to develop the world's first full-scale gas CCS project – the *Peterhead Project* (Scotland), with support of the UK Gov't

Large scale CCS projects by country/region - Status Nov. 2014 -

Source: GCCSI, 'The Global Status of CCS 2014', Melbourne, 2014

<u>Conclusions Int. Conf. GHGT-12 (Oct. 2014)</u>: 'At present optimism on CCS in North America and China, pessimism in Europe, apart from UK and Norway.' 'Nowadays the ROAD-project is about the only EU demo-plant project left'.

ROAD: EERP Demo project MPP3 - Rotterdam (NL) CCS: 1.1 Mt/yr

Consequences of Excluding CCS from the Mitigation Portfolio

- **1** Cost of mitigation will increase
 - Including CCS reduces the cost of the overall mitigation portfolio
- 2 Sufficiently large emission reductions will not be possible without CCS
 - Base and peak load generation will be challenging without fossil fuels
- **3** Political support for mitigation will be weak
 - Fossil fuel-rich regions will resist mitigation
- 4 Some geographic areas will not be able to reduce emissions rapidly enough
 - Renewable energy and nuclear power may be poor options in some areas

Energy scenarios & Renewables

World Primary Energy Supply in 2009

(using GEA substitution method to calculate contribution from renewables)

Fossil fuels:		412 EJ	(78%)	
- oil	167 EJ			
- gas	106 EJ			
- coal	139 EJ			
Renewables	:	89 EJ	(17%)	
- large hydro	30 EJ *)			
- traditional bi	omass 39 EJ		Eigu	iro NII ·
- 'new' renew	/ables 20 EJ *)		(~ 4%) < also	~ 4%
Nuclear:		27 EJ	(5%)	
Total:		528 EJ	(100 %)	

*) Assuming for hydro, wind, solar and geothermal electricity: 1 EJ(el) = 2.85 EJ savings on fossil fuels, and for solar and geothermal heat: 1 EJ(th) = 1.17 EJ savings on fossil fuels.

Source: W.C. Turkenburg et al., 'Renewable Energy'. In: Global Energy Assessment, 2012, chapter 11 16

Development gross inland energy consumption EU-28

- Between 2006 and 2012, gross inland energy consumption in the EU-28 has fallen by 8%.
- Between 2006 and 2012 energy consumption *fell* in 24 Member states, but *increased* in Estonia (+12%), Netherlands (+3%), Poland (+1%), and Sweden (+0.4%).
- In 2012, Denmark the only *net exporter* of energy.

	1990 <i>(EJ)</i>	2000 (EJ)	2006 (EJ)	2010 <i>(EJ)</i>	2012 <i>(EJ)</i>	% change 2006/2012	Energy dependence rate, 2012
EU-28	69.82	72.31	76.71	73.65	70.46	-8%	53%
Belgium	2.04	2.48	2.41	2.54	2.36	-2%	74%
Denmark	0.75	0.83	0.88	0.84	0.76	-14%	-3%
Germany	14.92	14.33	14.73	13.97	13.38	-9%	61%
Netherlands	2.80	3.17	3.33	3.63	3.43	+3%	31%
UK	8.83	9.66	9.65	8.84	8.47	-12%	42%

Source: Eurostat, 17 February 2014

Ten years of renewable energy progress (2004-2013)

62%	54%	37%	18%	-2%	33%	18%	-8%	-10%	17%
	L I	L 1	Ţ	Ţ	L I	L	L J		

Increase investments in *new* renewables by a factor 100 between 1991 and 2011!

> Global new investment in renewables by sector in 2014 (\$bn) and growth on 2013

Global new investment in renewables, 2004-2014 (\$bn)

Source: BNEF, 2015

Global Market Overview – Power Markets

- Renewable energy comprises more than 26% of global power generation capacity in 2012.
- Almost 22% of global electricity was produced from renewable energy (with 16.5% from hydro).
- Renewables accounted globally for *just over half* (51%) of the estimated 280 GW of new installed electric capacity in 2012 (and in Europe even 70%).
- We are witnessing a revolution in the energy field!

Some recent energy scenario studies

- Can we achieve a sustainable future? -

EU member states' RES shares (2013-2014) in relation to the indicative RED target 2013-2014 and the RED target 2020

Source: EEA, October 2015

Contribution renewables to gross *energy* and *electricity* consumption in NL and EU-28 in 2012

NL: Contribution RE to energy consumption in 2012: a ~ 4.5%

- mostly from biomass (86.9%) and wind (11.3%)
- from solar 1.3%, geoth. 0.3% and hydro 0.2%

EU-28: Contribution RE to energy cons. in 2012: ~ 14.1%

- 65.4% from biomass energy
- 16.2% from hydro power
- 10.0% from wind energy
- 5.2% from solar energy
- 3.2% from geothermal energy
- 0.02% from tide, wave, and ocean power

NL: Contribution RE to electricity consumption in 2012: ~ 10.5% - nearly all from biomass and wind

EU-28: Contribution RE to electricity cons. in 2012: ~ 23.5%

- mostly from biomass and hydropower

Ranking NL on renew. energy: nr. 25 and on renewable electricity: nr. 24

Note:

- NL has limited ren. energy resources:
 - small country (in km²);
 - hardly any hydro power resources;
 - limited availability of land for biomass energy cultures.
- Also: high ranking NL on population density: nr. 2 (less 'free space')

Potential of renewable energy sources in EU countries and contributions RES in 2011

Country	Renew. In 2011 (PJ/yr)	Share RE in 2011	RE/cap (GJ/cap)	RE/GDP (kJ/USD)	RE/km ² (GJ/km ²)	Wind	Solar	Hydro	Biom.	Geoth.	Ocean	
Austria	367.3	26.5%	43.7	879	4.379							
Belgium	119.7	4.9%	10.9	233	3,944							- The colour
Bulgaria	56.6	7.1%	7.8	1,058	510							table chowe
Cyprus	5.1	5.1%	4.6	206	551							Lable Shows
Czech Rep.	125.2	6.9%	11.9	577	1,616							that, within the
Denmark	170.7	22.4%	30.5	512	3,961							FU NI is not a
Estonia	34.8	15.0%	26.8	1,568	770							
Finland	379.9	25.8%	70.4	1,444	1,128							tavourable
France	765.0	7.2%	11.7	276	1,188							country for
Germany	1,307.7	10.1%	16.0	363	3,660							doveloping
Greece	89.3	7.8%	7.9	308	677							developing
Hungary	79.0	7.5%	7.9	564	849							renewable en.
Ireland	34.3	6.2%	7.5	158	491							sources apart
Italy	834,9	11.7%	13.7	381	2,771							Sources, apart
Latvia	60.1	34.7%	28.6	2,124	931							from wind
Lithuania	44.2	15.1%	14.7	1,035	677							energy.
Luxembourg	5.1	2.9%	9.8	86	1,977							
Malta	0.1	0.1%	0.24	11	323							- Therefore
Netherlands	138.1	4.2%	8.3	165	3 <mark>,</mark> 697							altornativas lika
	(13)	(24/25)	(20)	(23)	(4)							aller natives like
Poland	332.9	7.8%	8.6	647	1,067							Gas+CCS also
Portugal	215.3	22.4%	20.3	907	2,335							important for
Romania	212.2	14.0%	9.9	1,180	890							
Slovakia	57.2	7.8%	10.6	596	1,167							especially NL
Slovenia	39.7	13.1%	18.9	802	1,949							to reduce CO ₂
Spain	612.9	11.7%	13.3	415	1,211							omiogiono
Sweden	659.4	32.1%	70.1	1,222	1,464							ennissions.
Un. Kingdom	326.6	4.2%	5.2	134	1,347							
high	Hig	h/medium	mediu	m m	edium/low		low	ur	nknown	Not-a	pplicable	

Source:	Wim Turkenburg, 2013	- based on data from IRENA, 2013	

How to deal with intermittent renewables (wind / solar-PV)?

Integrating intermittent renewables

Source: Bruno Burger, Fraunhofer ISE, 2014

Source: Energy Market Price, 3 July 2014

Options to balance the fluctuating supply from wind and solar-based electricity

In random order:

- 1. Temporary curtailment of variable electricity generation sources;
- 2. Exchanging electricity surpluses with other countries;
- 3. More flexible utilization of part of the *electricity* demand (demand side response);
- 4. Flexible electrification of *energy* demand (e.g. Power-to-Heat);
- 5. Use of dispatchable gas-based electricity generation units (using natural gas or biogas, also combined with CCS);
- Implementation of some type of electricity storage, such as Pumped Hydro, Compressed Air Energy Storage (CAES) and batteries (in homes / electric vehicles);
- 7. Converting electricity into a gaseous energy carrier (P2G).

Sources: GEA, 2012; REP, 2012; RWE, 2013; ECN, July 2014; UU, 2016

Interaction between renewable energy supply, conventional energy supply, and the demand side

<u>UU-study</u>:

'Least-cost options for integrating intermittent renewables in low-carbon power systems'

(Applied Energy, 2016)

Hourly simulation of electricity supply in 2050 in Western Europe using the PLEXOS model

Source: A.S. Brouwer, M. van den Broek, W. Zappa, W. Turkenburg and A. Faaij, Applied Energy, 2016 30

Some input data used in the study

Category	Fuel / Technology	Cost per unit
Fuel cost	- Coal	1.7 €/GJ
(2035)	- Natural Gas	6.5 €/GJ
	- Uranium	1.0 €/GJ
	- Biomass	7.2 €/GJ
	- CO2 transport en storage	13.5 €/tCO2
TCR Investment cost	- Gasturbine (GT)	438 €/kW
(2035)	- NGCC / NGCC+CCS	902 €/kW / 1,349 €/kW
	- PC / PC+CCS	2,088 €/kW / 2,847 €/kW
	- Nuclear power	4,841 €/kW
	- Wind onshore / offshore	1,402 €/kW / 2,655 €/kW
	- Solar PV	700 €/kW
	- Biomass power	1,644 €/kW
	- Geothermal power	2,151 €/kW
	- Hydropower	2,059 €/kW

Source: A.S. Brouwer, M. van den Broek, W. Zappa, W. Turkenburg and A. Faaij, Applied Energy, 2016 31

Installed capacity (GW) and power generation (TWh/y) in the core scenarios in the year 2050

(The dashed line depicts the assumed peak load in 2050)

Source: A.S. Brouwer, M. van den Broek, W. Zappa, W. Turkenburg and A. Faaij, Applied Energy, 2016

Power generation in summer and winter (60% RES)

- NGCC+CCS generates power during the nights in the summer.
- Electricity storage could replace NGCCs in the summer but ...
- Baseload generation by NGCC+CCS during winter time is very costly to replace by (seasonal) storage.
- Gas turbines supply peak demand.

Total annual system costs in the core scenarios in Western Europe in 2050

Also shown: electricity costs vs. electricity price (€/MWh)

Conclusions: 1) Increase contribution renewables Annual system costs (bn€/yr) causes increase total system costs. 2) NGCC+CCS cost-effective balancing option. 3) Income per kWh less than costs per kWh, for renewables and for convent. power plants.

Source: A.S. Brouwer, M. van den Broek, W. Zappa, W. Turkenburg and A. Faaij, Applied Energy, 2016 34

Enige conclusies

- Aanpassing vraag aan aanbod en toepassing curtailment van belang voor goede inpassing zon- en windvermogen.
- Nog heel lang geen noodzaak grootschalige opslag elektriciteit, financieel voordeel ervan in de onderzochte scenario's nul tot negatief.
- Noodzaak nieuwe *zware koppelnetten* tussen de regio's in Europa niet heel groot. Uitbreiding bestaande koppelnetten levert financieel voordeel.
- Weinig of geen toekomst voor nieuwbouw van kolencentrales+CCS.
 (NB: er is niet gekeken naar de optie kolen+biomassa+CCS).
- Wel veel toekomst voor *aardgas+CCS*; toepassing van NGCC's met CCS levert grote kostenbesparingen t.o.v. toepassing heel veel hernieuwbaar.
- Kerncentrales komen vanwege kosten en bedrijfstijd niet gunstig uit de studie.
- Zonder aanpassing van het huidige 'energy only' marktmodel gaan de systemen (met name de windparken en het balansvermogen) er niet komen.

Source: A.S. Brouwer, M. van den Broek, W. Zappa, W. Turkenburg and A. Faaij, Applied Energy, 2016

Thanks!

Wim Turkenburg

w.c.turkenburg@uu.nl