(Un)certainties in our knowledge of Climate Sensitivity

A. Pier Siebesma siebesma@knmi.nl KNMI & TU Delft

Courtesy: Bony et al. Nature GeoScience 2015

Waarnemingen liegen niet

In-situ waarnemingen van CO2-trends in op Mauna Loa Observatory.

Waarnemingen liegen niet

Global annual mean temperature vs CO2-concentrations

Source: Climate Explorer G.J. van Oldenborgh

Maar we willen (nog) meer dan correlaties....

- Causaliteit (Attributie)
- Realistische toekomst scenario's
- Gebruik makend van fysische principes
- En door het opstellen en het testen van kritische hypotheses (de wetenschappelijke methode)

Gelukkig hebben we fysische behoudswetten.....

$$\frac{d\vec{v}}{dt} = -\frac{1}{\rho}\vec{\nabla}p - \vec{g} + \vec{F}_{fric} - 2\vec{\Omega} \times \vec{v}$$
Behoudswet van momentum

$$\frac{\partial\rho}{\partial t} = -\vec{\nabla}.(\rho\vec{v})$$
Behoudswet van massa

$$Q = C_p \frac{dT}{dt} - \frac{1}{\rho}\frac{dp}{dt}$$
Behouds wet van energie

$$\frac{\partial\rho q}{\partial t} = -\vec{\nabla}.(\rho\vec{v}q) + \rho(E - C)$$
Behouds wet van vocht

 $p = \rho R_g T$

Gas wet

Sir John Mason (1976) "You can thank your lucky stars that you are not economists. Those poor souls don't even know their equations!"

klimaatmodellen introduceren (grote) onzekerheden in de toekomst scenario's

Klimaat Gevoeligheid.

Evenwichts Klimaat Gevoeligheid (Equilibrium Climate Sensitivity (ECS))

De globale temperatuursverandering in een nieuwe evenwichtssituatie tgv een verdubbeling van CO2 (2XCO2)

12 Climate Models (CMIP3) ; 2X CO2 scenario

- Alle relevante klimaatveranderingen (zee-spiegelstijging, neerslag, regionale patronen) schalen met ECS
- Alle onzekerheden in klimaatverandering zijn dus terug te voeren op onzekerheid in klimaatgevoeligheid
- Dit maakt ECS een ge-idealiseerde maar fundamentele maat voor klimaatgevoeligheid.

Energie Balans aan de top van de atmosfeer Stephens et al. Nature (2013) ; Wild et al Climate Dyn (2013) Period 2010

240 W/m² (2) Uitgaande Infrarode Straling ("warmte")

Temperature E ~ σ T⁴ T=255K

340.2 W/m² (0.1) Inkomende Zonnestraling

100 W/m² (2)

Gereflecteerde Zonnestraing

Toename Broeikasgassen.....

Bijv: verdubbeling CO2

Afname uitgaande infrarood straling (3,7 Wm2 afname Stralingsforcering)

 $E \sim \sigma T^4$ Hoe zal de atmosfeer reageren?

Inkomende Zonnestraling

Gereflecteerde Zonnestraing

Totdat een nieuw evenwicht ontstaat

240 W/m²

Uitgaande Infrarode Straling ("warmte")

 $E \sim \sigma T^4$ Maar met een hogere nieuwe evenwichtstemperatuur (Maar hoeveel hoger?)

Gereflecteerde Zonnestraing

Stralingsbalans top atmosfeer: $R = ASR - OLR \simeq 0$

 $d\Phi$: externe factor (zonne-constante, or anthropogene toename CO2, anthropogene toename aerosolen,....

$$\delta R = \left(\frac{\partial R}{\partial \phi}\right)_{T_s} d\phi + \left(\frac{\partial R}{\partial T_s}\right)_{\phi} dT_s$$

In analogie met electronics

$$\delta R = F + \lambda \, dT_s \qquad \qquad \left\{ \begin{array}{l} F \equiv \left(\frac{\partial R}{\partial \phi}\right)_{T_s} d\phi & : \text{Forcing} \\ \\ \lambda \equiv \left(\frac{\partial R}{\partial T_s}\right)_{\phi} & : \text{Feedback Factor} \end{array} \right.$$

Wanneer een forcering (i.e. doubling CO2: 3,75 Wm^{-2}) wordt ingeschakeld, zal T_s zich aanpassen tot dat stralingsevenwicht is hersteld.

Stralingsbalans top atmosfeer: $R = ASR - OLR \simeq 0$

 Φ : externe factor (zonne-constante, or anthropogene toename CO2, anthropogene toename aerosolen,....

$$\delta R = \left(\frac{\partial R}{\partial \phi}\right)_{T_s} d\phi + \left(\frac{\partial R}{\partial T_s}\right)_{\phi} dT_s$$

In analogie met electronics

$$\delta R = F + \lambda \, dT_s \qquad \qquad \left\{ \begin{array}{l} F \equiv \left(\frac{\partial R}{\partial \phi}\right)_{T_s} d\phi & : \text{Forcing} \\ \\ \lambda \equiv \left(\frac{\partial R}{\partial T_s}\right)_{\phi} & : \text{Feedback Factor} \end{array} \right.$$

Wanneer een forcering (i.e. doubling CO2: 3,75 Wm^{-2}) wordt ingeschakeld, zal T_s zich aanpassen tot dat stralingsevenwicht is hersteld.

Toy Energy Balance Model:

$$R = ASR - OLR$$
$$= \frac{S_0}{4} (1 - \alpha) - \gamma \sigma T_s^4$$

Als alleen de opp temperature kan reageren

$$\lambda_P = \left(\frac{\partial R}{\partial T_s}\right)_{\phi} = -4\gamma\,\sigma T_s^3 = -3.3Wm^{-2}K^{-1}$$

$$\Delta T_{s,P} = -F/\lambda_p = 1.1K$$

Planck Response

Toy Energy Balance Model:

$$R = ASR - OLR$$
$$= \frac{S_0}{4} (1 - \alpha) - \gamma \sigma T_s^4$$

Simpel: Alleen temperatuur kan reageren

$$\lambda_P = \left(\frac{\partial R}{\partial T_s}\right)_{\phi} = -4\,\gamma\,\sigma T_s^3 = -3.3Wm^{-2}K^{-1} \qquad \qquad \Delta T_{s,P} = -F/\lambda_p = 1.1K \qquad \text{Planck Res}$$

sponse

Maar als de opp temperature toeneemt zullen andere atmosferische variabelen (x) ook reageren (waterdamp, zee-ijs, wolken), zg feedbacks:

Water Damp Feedback

Clausius-Clayperon:

 $\frac{de_s}{dT} = \frac{L}{T\alpha} \quad \mbox{De verzadigings dampspanning neemt exponentieel met temperatuur toe}.$

Een warmere atmosfeer kan (en zal) meer waterdamp bevatten (plus/min 7% /K)

CMIP3 Climate Models Stephens&Ellis (2008)

Satellite SSMI Wentz et al. 2007)

Waterdamp Feedback

Clausius-Clayperon:

 $\frac{de_s}{dT} = \frac{L}{T\alpha}$ De verzadigings dampspanning neemt exponentieel met temperatuur toe.

Een warmere atmosfeer kan (en zal) meer waterdamp bevatten (plus/min 7% /K)

Satellite SSMI Wentz et al. 2007)

Waterdamp : Robuste en sterke feedback die de Planck response ongeveer verdubbelt:

Fysische Argumenten in overeenstemming met klimaatmodellen (CMIP3) ?

Cloud effects "remain the largest source of uncertainty" in model based estimates of climate sensitivity IPCC 2013

CMIP5 Estimates of Equilibrium Climate Sensitivity

After Vial et al. Clim. Dyn (2013)

Cloud Feedback Mechanisms

Source: FP7 EUCLIPSE final report IPCC AR5

- Cloud feedback likely positive
- Largest uncertainty from low clouds
- Robust positive feedback Signal from Fixed Anvil Theory (FAT)
- But missing processes can not be excluded

CMIP5 Intermodel spreiding vs Robuste Feedbacks

Stevens&Bony Physics Today 2013

Bepaling van Equilibrium Climate Sensitivity (ECS) uit observaties

Als de mondiale temperatuurstijging, de Forcering, en de Warmte Opname van het klimaatsysteem kan worden gemeten dan kan ECS worden bepaald uit:

$$ECS = \frac{F_{CO_2}}{F - \Delta R} \Delta T_s$$

 $F_{CO2} = 3,45$ Wm-2 ("Effective" Radiative Forcing) $\Delta R =$ Essentially the ocean heat uptake ~ 0.6 Wm-2 F = Radiative Forcing over the period where ΔTs is determined

Toegepast op 20e eeuw (maar ook op paleo-data)

Grote onzekerheid in aerosol forcing en in ocean heat uptake.

Schattingen van stralingsforceringen tov 1750

	Emitted		Resulting atmospheric drivers	Radi	ative forcing	by emissions	and drivers	Level of confidence
Arthropogenia	gases	CO2	CO ₂				1.68 [1.33]	to 2.03] VH
	esnouue	CH₄	CO_2 H ₂ O ^{str} O ₃ CH ₄		:		0.97 [0.74]	to 1.20] H
	iixed gree	Halo- carbons	O3 CFCs HCFCs				0.18 [0.01 1	to 0.35] H
	Well-m	N_2O	N ₂ O				0.17 [0.13]	to 0.21] VH
		со	CO ₂ CH ₄ O ₃		¦ ⊫ +		0.23 (0.16)	to 0.30] M
	d aeroso	NMVOC	CO ₂ CH ₄ O ₃		i I +1		0.10 [0.05	to 0.15] M
	gases an	NO _x	Nitrate CH ₄ O ₃				-0.15 [-0.34]	to 0.03] M
	A More Level	erosols and precursors Mineral dust,	Mineral dust Sulphate Nitrate Organic carbon Black carbon				-0.27 [-0.77	to 0.23] H
	O	SO ₃ , NH ₃ , rganic carbon d Black carbon)	Cloud adjustments due to aerosols		•I		-0.55 [-1.33 t	o -0.06] L
			Albedo change due to land use		 ++-		-0.15 [-0.25 to	o -0.05] M
Natural	Changes in solar irradiance				· · ·		0.05 [0.00	to 0.10] M
Total anthropogenic RF relative to 1750					2011		2.29 [1.131	to 3.33]
					1980		1.25 (0.64)	to 1.86] H
				I	1950		0.57 [0.29 (to 0.85] M
				-1	0	1	2 3	
	Radiative forcing relative to 1750 (W m ⁻²)							

Conclusies

Robuste Feedbacks suggereren ECS van 2.65K plus/min 0.5 K

Lagere ECS heeft extra plausibele negatieve cloud feedback processen "nodig"

Observationele schattingen geven een ruimere bandbreedte van ECS [1, 8K]

Betere schattingen van Forcering (met name aerosols (in)direct) kunnen tot betere observationele schattingen van ECS leiden.