Satellite observations : Methane is 'hot'

How satellite observations can support emission reductions

Ilse Aben + *SRON TROPOMI-team and collaborators i.aben@sron.nl*

Netherlands Institute for Space Research

Why is methane so 'hot' ?

- Methane ~30% of global warming ٠
- ٠
- ٠

RO

25% of emission reduction at no net cost. ٠ , 55% technically feasible (Ocko et al., 2021)

COP26: US and EU announce global

BBC

pledge to slash methane

() 2 November 202

CH4 increased by > 150% since pre-industrial

Some areas limited/no coverage

TROPOMI on Sentinel-5 precursor : game changer

- Launched in Oct. 2017, EU Copernicus programme
- Collaboration between the Netherlands and ESA
- Measuring many atmospheric species (O₃, CO, NO₂, SO₂, incl. CH₄ total columns), data freely available within 3 hours (CH₄ 2 days)
- **Unique** capability : daily global coverage & 7 x 5.5 km² individual observations
- Precursor to Sentinel-5 (2024 2044+)

Satellite observations of methane

Where are the large methane emissions ? → Satellites can help

Satellites complementary to surface network

- Global
- challenging

Source gives **very small gradient** in concentration field total columns.

 \rightarrow o.a. cloud-free (few % data used)

TROPOMI L2: Methane (CH₄) data product

¹³ssadens ¹³ssadens ¹³sadens ¹³saden

East Trout Lake

Operational Site

Lorente et al., 2021

TROPOMI detects super emitting coal mines Australia

Three super emitting coal mine (clusters).

6 mines : 7 % AUS. coal production, 55% reported AUS CH4 total coal emissions One surface coal mine 1% coal production, 24% of reported emissions all coal mines AUS.

TROPOMI detection methane Super emitters 2021

Schuit et al. (ACPD)

Source types from bottom-up emission inventory

Low hanging fruit wrt climate mitigation

TROPOMI detection methane Super emitters 2021

What are the exact sources responsible for these super emitter signals ?

TROPOMI 'tip-and-cue' GHGSat : persistent emissions Buenos Aires (Arg.)

Maasakkers et al. (2022)

Methane emissions from landfill in Buenos Aires

Maasakkers et al. (2022)

Amount equal to ~10% of methane Permian basin (largest Oil (and Gas) production basin US)

TROPOMI & GHGsat : emissions landfills

Landfill emissions : Madrid

GHGSAT[™]

Landfill - Madrid, Spain CH₄ Concentration Map

ESA aircraft campaign summer 2022

Figure Credit: Gourav Mahapatra. ESA web story from November 11, 2021.

Methane emissions from coal mines : surface mines !!

TROPOMI

Ekibastuz region (Kazachstan)

Point source 1: 37,455 kg/hr ±42%

Point source 2: 23,081 kg/hr ±42%

Underground mines in pennsylvania (USA)

Underground mines in pennsylvania (USA)

Land imagers (e.g.Sentinel-2, PRISMA) can detect methane super emitters favorable conditions

- SWIR methane absorption band
- Very strong localised methane source, homogeneous terrain
- Very high spatial resolution ~20-50 m
- Sentinel-2 global coverage 2-5 days, PRISMA targeting
- Data publicly available

TROPOMI,5.5x7km²,0.25 nm Daily global coverage

PRISMA,25x25 m²,10-20 nm Targeting

Sentinel-2,20x20 m²,100 nm Global coverage in 5 days

GHGSat : no public data

. . . .

West Turkmenistan

TROPOMI methane

Irakulis, et al. ES&T, 2022

West Turkmenistan

Itziar Irakulis-Loitxate,* Luis Guanter, Joannes D. Maasakkers, Daniel Zavala-Araiza, and Ilse Aben

Monitor in time with Sentinel-2

IMEO - MARS

UNEP's International Methane Emissions Observatory launched the Methane Alert and Response System (MARS) at COP27, a new initiative to accelerate implementation of the Global Methane Pledge by transparently scaling up global efforts to detect and act on major methane emissions sources.

Start operational 1 June/July

Wereldwijd alarmeringssysteem gelanceerd tegen methaanuitstoot

RON

SRON is core partner to MARS (Component-1)

An Eye on Methane International Methane Emissions Observatory 2022 Report

Global Methane Hub – landfill emissions

Global Methane Hub, SRON and GHGSat started new project to characterize, study and monitor landfills globally, working with NGOs and local partners on mitigation

Satellite-detected urban and landfill methane emissions

Global Methane Hub – landfill emissions

Global Methane Hub, SRON and GHGSat started new project to characterize, study and monitor landfills globally, working with NGOs and local partners on mitigation

Satellite-detected urban and landfill methane emissions

Global Methane Hub – landfill emissions

Global Methane Hub, SRON and GHGSat started new project to characterize, study and monitor landfills globally, working with NGOs and local partners on mitigation

Satellite-detected urban and landfill methane emissions

Concluding :

- TROPOMI is a real game changer wrt detection of methane (non-)persistent super emitters globally (but limited to large emissions ~ 5-10 t CH₄/hr)
- Combination with high spatial resolution satellites (e.g. GHGSat, but also PRISMA, S2, etc) is VERY POWERFUL to identify the super emitting facilities
- Can support verification and prioritising climate mitigation action. Provide the information super emitters with **MARS** (IMEO under UN) to support countries & industry etc. to reduce their emissions and meet the **Methane Pledge** goals
- Also support GMH to address methane emissions from landfills/waste dumps in Global South

The methane hunters Using satellites to spot industry's methane leaks

